VIDEO EQUALIZER

- GENERAL DESCRIPTION

NJM2258 is the IC functioning the gain high pass correction, as well as for equalizing function of wave distortion correction, generated by bright signal of group delay feature like low band filter. It has internalizing REC line, one circuit, and then the playback line 2cirucuit.

- FEATURES

- PACKAGE OUTLINE

NJM2258L

- 5V Spec, (Recmmended Operating Voltage Range)
- Wide Band Width, 10MHz
- REC / PLAYBACK Change over function attached
- Package Outline SDIP22
- Bipolar Technology

- APPLICATION

- VCR (S-VHS compatible)
- Video Camera
- Laser Disc

- BLOCK DIAGRAM

- ABSOLUTE MAXIMUM RATINGS
$\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V^{+}	7	V
Power Dissipation	P_{D}	700	mW
Operating Temperature Range	$\mathrm{T}_{\text {opr }}$	-20 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

- ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	Ip	No Signal	-	26	34	mA
HB-REC						
Phase Positive Gain	$\mathrm{G}_{\text {af }}$	$\mathrm{f}_{\text {N }}=100 \mathrm{KHz} \mathrm{19PINOUT}$	-1	0	+1	dB
Phase Negative Gain	$\mathrm{G}_{\text {ar }}$	$\mathrm{f}_{\mathrm{iN}}=100 \mathrm{KHz} 20 \mathrm{PINOUT}$	-6.4	-5.4	-4.4	dB
19pin Impedance	AT19	$\mathrm{fiN}=100 \mathrm{KHz}$	-7.0	-6.0	-5.0	dB
Output Gain LOW	G_{a}	$\mathrm{fiN}_{\mathrm{N}}=100 \mathrm{KHz}$	-1	0	+1	dB
Output Gain HIGH	$\mathrm{G}_{\text {ah }}$	$\mathrm{fin}^{\mathrm{N}}=5 \mathrm{MEGHz}$	-1	0	+1	dB
Output Gain f Feature	$\Delta \mathrm{G}_{\mathrm{a}}$	Gah - Gal	-1	0	+1	dB
Output Secondary Distortion	DA2	$\mathrm{FllN}=5 \mathrm{MEG} \mathrm{viN}_{\text {I }}=1.0 \mathrm{~V}_{\mathrm{PP}}$		-40	-30	dB
Output the third Distortion	DA3	$\mathrm{fiN} 5 \mathrm{MEG} \mathrm{V}_{\text {IN }}=1.0 \mathrm{~V}_{\text {PP }}$		-36	-30	dB
HB-PB						
Positive Phase Gain	G_{bf}	$\mathrm{f}_{\mathrm{N}}=100 \mathrm{KHz} \mathrm{16PINOUT}$	-1	0	+1	dB
Negative Phase Gain	G_{br}	$\mathrm{f}_{\mathrm{N}}=100 \mathrm{KHz}$ 17PINOUT	-0.2	0.8	1.8	dB
16 Impedance	AT_{16}	$\mathrm{f}_{\mathrm{N}}=100 \mathrm{KHz}$	-7.0	-6.0	-5.0	dB
Output Gain	G_{ca}	$\mathrm{fin}^{\text {}}=100 \mathrm{KHz}$	-6.1	-5.0	-4.0	dB
15-14 Impedance	$\Delta \mathrm{G}_{\mathrm{c}}$	$15 \mathrm{PIN}-14 \mathrm{PIN}=1.7 \mathrm{~K} \Omega$	4.5	5.5	6.5	dB
Output Gain LOW	$\mathrm{G}_{\text {cbl }}$	$\mathrm{f}_{\mathrm{N}}=100 \mathrm{KHz}$	-1	0	+1	dB
Output Gain HIGH	$\mathrm{G}_{\text {chh }}$	$\mathrm{fiN}_{\text {i }}=5 \mathrm{MEGHz}$	2	3	4	dB
Output Gain fFeature	$\Delta \mathrm{G}_{\mathrm{b}}$	Gcbh - Gcbl	2	3	4	dB
Output Secondary Distortion	DC2	$\mathrm{f}_{\mathrm{N}}=5 \mathrm{MEG} \mathrm{V}_{\mathbb{N}}=1.0 \mathrm{~V}_{\mathrm{PP}}$		-30	-25	dB
Output the third Distortion	DC3	$\mathrm{fiN}^{\mathrm{N}}=5 \mathrm{MEGG} \mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{~V}_{\mathrm{PP}}$		-27	-22	dB
LB-PB						
Positive Phase Gain	G_{df}	$\mathrm{f}_{\mathrm{N}}=100 \mathrm{KHz}$ 6PINOUT	-1	0	+1	dB
Negative Phase Gain	$\mathrm{G}_{\text {dr }}$	$\mathrm{fin}^{\text {¢ }}=100 \mathrm{KHz} 5 \mathrm{PINOUT}$	-0.2	0.8	1.8	dB
6 Impedance	AT6	$\mathrm{f}_{\mathrm{N}}=100 \mathrm{KHz}$	-7.0	-6.0	-5.0	dB
Output Gain	$\mathrm{G}_{\text {da }}$	$\mathrm{f}_{\mathrm{N}}=100 \mathrm{KHz}$	-6.1	-5.1	-4.1	dB
7-8 Impedance	$\Delta \mathrm{G}_{\mathrm{d}}$	$7 \mathrm{PIN}-8 \mathrm{PIN}=1.7 \mathrm{~K} \Omega$	4.5	5.5	6.5	dB
Output Gain LOW	$\mathrm{G}_{\text {ebl }}$	$\mathrm{f}_{\mathrm{N}}=100 \mathrm{KHz}$		+1	0	dB
Output Gain HIGH	$\mathrm{G}_{\text {ebh }}$	$\mathrm{fin}^{\mathrm{N}}=5 \mathrm{MEGHz}$	-1	0	+1	dB
Output Gain f Feature	$\Delta \mathrm{G}_{\mathrm{e}}$	Gebh - Gebl	-1	0	+1	dB
Output Secondary Distortion	DE2	$\mathrm{f}_{\mathrm{N}}=5 \mathrm{MEG} \mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{~V}_{\mathrm{PP}}$		-35	-28	dB
Output the third Distortion	DE3	$\mathrm{f}_{\mathrm{N}}=5 \mathrm{MEG} \mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{~V}_{\mathrm{PP}}$		-36	-30	dB

- TERMINAL FUNCTION

PIN	PIN NAME	SYMBOL	
1	HB-REC / PB OUT	VOUT1	HB type (S-VHS) Correction Output Pin
2	GND	GND	Ground
3	LB-PB IN	VIN2	LB type, (VHS) play-back signal Input Pin
4	HB-REC / PB Change over	PB REC	HB type, Change-over output of REC signal or Play-back signal High makes play-back signal output, and low makes REC signal output.
5	LB-PB Phase Correction Pin 1	LPC1	Connecting capacitor between Pin 5 to 6, which helps to give feature of correcting the group delay.
6	LB-PB Phase Correction Pin 2	LPC2	Connecting capacitor between Pin 5 to 6, which helps to give feature of correcting the group delay.
7	LB-PB Gain Correction Pin 1	LGC1	Setting up Gain by connecting resistor between Pin 7 to 8.
8	LB-PB Gain Correction Pin 2	LGC2	Setting up Gain by connecting resistor between Pin 7 to 8.
9	LB-PB Gain Correction Pin 3	LP	Connecting L-C parallel resonance between pin 9 to GND, helps to give High band keeping, and if not required of keeping connect to GND.
10	LB-PB OUT	VOUT2	LB type Output pin
11	N.C	N.C pin	
12	N.C	N.C pin	
13	LB-PB Gain Correction Pin 3	HP	Connecting L-C parallel resonance between pin 13 to GND, helps to give High band keeping, and if not required of keeping connect to GND.
14	LB-PB Gain Correction Pin 2	HPG1	Setting up Gain by connecting resistor between Pin 14 to 15.
15	LB-PB Gain Correction Pin 1	HPG2	Setting up Gain by connecting resistor between Pin 14 to 15.
16	LB-PB Phase Correction Pin 2	HPC1	Connecting Capacitor between Pin 16 to 17, which helps to give feature of correcting the group delay.
17	LB-PB Phase Correction Pin 1	HPC2	Connecting Capacitor between Pin 16 to 17, which helps to give feature of correcting the group delay.
18	N.C	V.C pin	
19	LB-PB Phase Correction Pin 2	HRC1	Connecting Capacitor between Pin 19 to 20, which helps to give feature of correcting the group delay.
20	LB-PB Phase Correction Pin 1	HRC2	Connecting Capacitor between Pin 19 to 20, which helps to give feature of correcting the group delay.
21	V	Voltage Source.	
22	HB-REC / PB IN	HB type Input pin.	

- TEST CONDITION

PARAMETER	SW-CONDITION													TESTPIN	TEST CONDITION
	1	2	3	4	5	6	7	8	9	10	11	12	13		
IP	a	a	b	b	b	a	b	b	b	b	b	b	a		
GA_{f}	b													V19	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{V}=0.5 \mathrm{~V}_{\text {P-P }}$
GA ${ }_{r}$													b	V20	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{V}=0.5 \mathrm{~V}_{\text {P-P }}$
AT19											a		a	V19	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{V}=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
Gal											b	a		VOUT1	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{V}=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
Gah											b	a		VOUT1	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{V}=0.5 \mathrm{~V}_{\text {P-P }}$
DA2												c		VOUT1	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{V}=1.0 \mathrm{~V}_{\text {P-P }}$
DA3												c		VOUT1	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{V}=1.0 \mathrm{~V}_{\text {P-P }}$
Gbf														V16	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{V}=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
Gbr														V17	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{V}=0.5 \mathrm{~V}_{\text {P-P }}$
AT16										a				V16	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{V}=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
Gca	a								a	b				VOUT1	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{V}=0.5 \mathrm{~V}_{\text {P-P }}$
$\Delta \mathrm{Gca}$							a	a						VOUT1	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{V}=0.5 \mathrm{~V}_{\text {P-P }}$
Gcb1					a		c	c						VOUT1	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{V}=0.5 \mathrm{~V}_{\text {P-P }}$
Gcbh					a		c	c						VOUT1	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{V}=0.5 \mathrm{~V}_{\text {P-P }}$
DC2					b		c	c	c					VOUT1	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{V}=1.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
DC3					b		c	c	c					VOUT1	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{V}=1.0 \mathrm{~V}_{\text {P-P }}$
Gdf	a										b	a		V6	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{V}=0.5 \mathrm{~V}_{\text {P-P }}$
Gdr														V5	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{V}=0.5 \mathrm{~V}_{\text {P-P }}$
AT6		b												V6	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{V}=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
Gda		a												VOUT2	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{V}=0.5 \mathrm{~V}_{\text {P-P }}$
$\Delta \mathrm{Gd}$			a	a										VOUT2	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{V}=0.5 \mathrm{~V}_{\text {P-P }}$
Geb1			c	c										VOUT2	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{V}=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
Gebh			c	c										VOUT2	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{V}=0.5 \mathrm{~V}_{\text {P-P }}$
DE2			c	c										VOUT2	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{V}=1.0 \mathrm{~V}_{\text {P-P }}$
DE3			c	c										VOUT2	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{V}=1.0 \mathrm{~V}_{\text {P-P }}$

- TEST CIRCUIT

- APPLICATION CIRCUIT

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

